Local Arp2/3-dependent actin assembly modulates applied traction force during apCAM adhesion site maturation
نویسندگان
چکیده
Homophilic binding of immunoglobulin superfamily molecules such as the Aplysia cell adhesion molecule (apCAM) leads to actin filament assembly near nascent adhesion sites. Such actin assembly can generate significant localized forces that have not been characterized in the larger context of axon growth and guidance. We used apCAM-coated bead substrates applied to the surface of neuronal growth cones to characterize the development of forces evoked by varying stiffness of mechanical restraint. Unrestrained bead propulsion matched or exceeded rates of retrograde network flow and was dependent on Arp2/3 complex activity. Analysis of growth cone forces applied to beads at low stiffness of restraint revealed switching between two states: frictional coupling to retrograde flow and Arp2/3-dependent propulsion. Stiff mechanical restraint led to formation of an extensive actin cup matching the geometric profile of the bead target and forward growth cone translocation; pharmacological inhibition of the Arp2/3 complex or Rac attenuated F-actin assembly near bead binding sites, decreased the efficacy of growth responses, and blocked accumulation of signaling molecules associated with nascent adhesions. These studies introduce a new model for regulation of traction force in which local actin assembly forces buffer nascent adhesion sites from the mechanical effects of retrograde flow.
منابع مشابه
An Aplysia cell adhesion molecule associated with site-directed actin filament assembly in neuronal growth cones.
During neuronal growth cone-target interactions, a programmed sequence of cytoskeletal remodeling has been described, involving increased actin assembly at the target site and directed microtubule extension into it. The cell adhesion protein apCAM rapidly accumulates at such interaction sites, suggesting a possible role in regulating cytoskeletal remodeling. To test this hypothesis we crosslink...
متن کاملTransient Frictional Slip between Integrin and the ECM in Focal Adhesions under Myosin II Tension
BACKGROUND The spatiotemporal regulation of adhesion to the extracellular matrix is important in metazoan cell migration and mechanosensation. Although adhesion assembly depends on intracellular and extracellular tension, the biophysical regulation of force transmission between the actin cytoskeleton and extracellular matrix during this process remains largely unknown. RESULTS To elucidate th...
متن کاملQuantitative analysis of microtubule dynamics during adhesion-mediated growth cone guidance.
During adhesion-mediated neuronal growth cone guidance microtubules undergo major rearrangements. However, it is unknown whether microtubules extend to adhesion sites because of changes in plus-end polymerization and/or translocation dynamics, because of changes in actin-microtubule interactions, or because they follow the reorganization of the actin cytoskeleton. Here, we used fluorescent spec...
متن کاملChanges in E-cadherin rigidity sensing regulate cell adhesion.
Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we ...
متن کاملMicrotubule Dynamics Are Necessary for Src Family Kinase-Dependent Growth Cone Steering
Dynamic microtubules explore the peripheral (P) growth cone domain using F actin bundles as polymerization guides. Microtubule dynamics are necessary for growth cone guidance; however, mechanisms of microtubule reorganization during growth cone turning are not well understood. Here, we address these issues by analyzing growth cone steering events in vitro, evoked by beads derivatized with the I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 28 شماره
صفحات -
تاریخ انتشار 2017